--- id: 5900f47e1000cf542c50ff90 title: 'Problem 273: Sum of Squares' challengeType: 5 forumTopicId: 301923 dashedName: problem-273-sum-of-squares --- # --description-- Consider equations of the form: $a^2 + b^2 = N$, $0 ≤ a ≤ b$, $a$, $b$ and $N$ integer. For $N = 65$ there are two solutions: $a = 1, b = 8$ and $a = 4, b = 7$. We call $S(N)$ the sum of the values of $a$ of all solutions of $a^2 + b^2 = N$, $0 ≤ a ≤ b$, $a$, $b$ and $N$ integer. Thus $S(65) = 1 + 4 = 5$. Find $\sum S(N)$, for all squarefree $N$ only divisible by primes of the form $4k + 1$ with $4k + 1 < 150$. # --hints-- `sumOfSquares()` should return `2032447591196869000`. ```js assert.strictEqual(sumOfSquares(), 2032447591196869000); ``` # --seed-- ## --seed-contents-- ```js function sumOfSquares() { return true; } sumOfSquares(); ``` # --solutions-- ```js // solution required ```