--- id: 5900f4861000cf542c50ff98 title: 'Problem 281: Pizza Toppings' challengeType: 5 forumTopicId: 301932 dashedName: problem-281-pizza-toppings --- # --description-- You are given a pizza (perfect circle) that has been cut into $m·n$ equal pieces and you want to have exactly one topping on each slice. Let $f(m,n)$ denote the number of ways you can have toppings on the pizza with $m$ different toppings ($m ≥ 2$), using each topping on exactly $n$ slices ($n ≥ 1$). Reflections are considered distinct, rotations are not. Thus, for instance, $f(2,1) = 1$, $f(2,2) = f(3,1) = 2$ and $f(3,2) = 16$. $f(3,2)$ is shown below: animation with 16 ways to have 3 different toppings on 2 slices each Find the sum of all $f(m,n)$ such that $f(m,n) ≤ {10}^{15}$. # --hints-- `pizzaToppings()` should return `1485776387445623`. ```js assert.strictEqual(pizzaToppings(), 1485776387445623); ``` # --seed-- ## --seed-contents-- ```js function pizzaToppings() { return true; } pizzaToppings(); ``` # --solutions-- ```js // solution required ```