--- id: 5900f4931000cf542c50ffa5 title: 'Problem 294: Sum of digits - experience #23' challengeType: 5 forumTopicId: 301946 dashedName: problem-294-sum-of-digits---experience-23 --- # --description-- For a positive integer $k$, define $d(k)$ as the sum of the digits of $k$ in its usual decimal representation. Thus $d(42) = 4 + 2 = 6$. For a positive integer $n$, define $S(n)$ as the number of positive integers $k < {10}^n$ with the following properties: - $k$ is divisible by 23 and, - $d(k) = 23$. You are given that $S(9) = 263\\,626$ and $S(42) = 6\\,377\\,168\\,878\\,570\\,056$. Find $S({11}^{12})$ and give your answer $\bmod {10}^9$. # --hints-- `experience23()` should return `789184709`. ```js assert.strictEqual(experience23(), 789184709); ``` # --seed-- ## --seed-contents-- ```js function experience23() { return true; } experience23(); ``` # --solutions-- ```js // solution required ```