--- id: 5900f4931000cf542c50ffa6 title: 'Problem 295: Lenticular holes' challengeType: 5 forumTopicId: 301947 dashedName: problem-295-lenticular-holes --- # --description-- We call the convex area enclosed by two circles a lenticular hole if: - The centres of both circles are on lattice points. - The two circles intersect at two distinct lattice points. - The interior of the convex area enclosed by both circles does not contain any lattice points. Consider the circles: $$\begin{align} & C_0: x^2 + y^2 = 25 \\\\ & C_1: {(x + 4)}^2 + {(y - 4)}^2 = 1 \\\\ & C_2: {(x - 12)}^2 + {(y - 4)}^2 = 65 \end{align}$$ The circles $C_0$, $C_1$ and $C_2$ are drawn in the picture below. C_0, C_1 and C_2 circles $C_0$ and $C_1$ form a lenticular hole, as well as $C_0$ and $C_2$. We call an ordered pair of positive real numbers ($r_1$, $r_2$) a lenticular pair if there exist two circles with radii $r_1$ and $r_2$ that form a lenticular hole. We can verify that ($1$, $5$) and ($5$, $\sqrt{65}$) are the lenticular pairs of the example above. Let $L(N)$ be the number of distinct lenticular pairs ($r_1$, $r_2$) for which $0 < r_1 ≤ r_2 ≤ N$. We can verify that $L(10) = 30$ and $L(100) = 3442$. Find $L(100\\,000)$. # --hints-- `lenticularHoles()` should return `4884650818`. ```js assert.strictEqual(lenticularHoles(), 4884650818); ``` # --seed-- ## --seed-contents-- ```js function lenticularHoles() { return true; } lenticularHoles(); ``` # --solutions-- ```js // solution required ```