--- id: 5900f4941000cf542c50ffa7 title: 'Problem 296: Angular Bisector and Tangent' challengeType: 5 forumTopicId: 301948 dashedName: problem-296-angular-bisector-and-tangent --- # --description-- Given is an integer sided triangle $ABC$ with $BC ≤ AC ≤ AB$. $k$ is the angular bisector of angle $ACB$. $m$ is the tangent at $C$ to the circumscribed circle of $ABC$. $n$ is a line parallel to $m$ through $B$. The intersection of $n$ and $k$ is called $E$. triangle ABC, with k - the angular bisector of angle ACB, m - tangent at point C, n - line parallel to m through B, and point E - intersection of k and n How many triangles $ABC$ with a perimeter not exceeding $100\\,000$ exist such that $BE$ has integral length? # --hints-- `angularBisectorAndTangent()` should return `1137208419`. ```js assert.strictEqual(angularBisectorAndTangent(), 1137208419); ``` # --seed-- ## --seed-contents-- ```js function angularBisectorAndTangent() { return true; } angularBisectorAndTangent(); ``` # --solutions-- ```js // solution required ```