--- id: 5900f4951000cf542c50ffa8 title: 'Problem 297: Zeckendorf Representation' challengeType: 5 forumTopicId: 301949 dashedName: problem-297-zeckendorf-representation --- # --description-- Each new term in the Fibonacci sequence is generated by adding the previous two terms. Starting with 1 and 2, the first 10 terms will be: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89. Every positive integer can be uniquely written as a sum of nonconsecutive terms of the Fibonacci sequence. For example, 100 = 3 + 8 + 89. Such a sum is called the Zeckendorf representation of the number. For any integer $n>0$, let $z(n)$ be the number of terms in the Zeckendorf representation of $n$. Thus, $z(5) = 1$, $z(14) = 2$, $z(100) = 3$ etc. Also, for $0 < n < {10}^6$, $\sum z(n) = 7\\,894\\,453$. Find $\sum z(n)$ for $0 < n < {10}^{17}$. # --hints-- `zeckendorfRepresentation()` should return `2252639041804718000`. ```js assert.strictEqual(zeckendorfRepresentation(), 2252639041804718000); ``` # --seed-- ## --seed-contents-- ```js function zeckendorfRepresentation() { return true; } zeckendorfRepresentation(); ``` # --solutions-- ```js // solution required ```