--- id: 5900f49d1000cf542c50ffb0 title: 'Problem 305: Reflexive Position' challengeType: 5 forumTopicId: 301959 dashedName: problem-305-reflexive-position --- # --description-- Let's call $S$ the (infinite) string that is made by concatenating the consecutive positive integers (starting from 1) written down in base 10. Thus, $S = 1234567891011121314151617181920212223242\ldots$ It's easy to see that any number will show up an infinite number of times in $S$. Let's call $f(n)$ the starting position of the $n^{\text{th}}$ occurrence of $n$ in $S$. For example, $f(1) = 1$, $f(5) = 81$, $f(12) = 271$ and $f(7780) = 111\\,111\\,365$. Find $\sum f(3^k) for 1 ≤ k ≤ 13$. # --hints-- `reflexivePosition()` should return `18174995535140`. ```js assert.strictEqual(reflexivePosition(), 18174995535140); ``` # --seed-- ## --seed-contents-- ```js function reflexivePosition() { return true; } reflexivePosition(); ``` # --solutions-- ```js // solution required ```