--- id: 5900f4a11000cf542c50ffb4 title: 'Problem 309: Integer Ladders' challengeType: 5 forumTopicId: 301963 dashedName: problem-309-integer-ladders --- # --description-- In the classic "Crossing Ladders" problem, we are given the lengths $x$ and $y$ of two ladders resting on the opposite walls of a narrow, level street. We are also given the height $h$ above the street where the two ladders cross and we are asked to find the width of the street ($w$). ladders x and y, crossing at the height h, and resting on opposite walls of the street of width w Here, we are only concerned with instances where all four variables are positive integers. For example, if $x = 70$, $y = 119$ and $h = 30$, we can calculate that $w = 56$. In fact, for integer values $x$, $y$, $h$ and $0 < x < y < 200$, there are only five triplets ($x$, $y$, $h$) producing integer solutions for $w$: (70, 119, 30), (74, 182, 21), (87, 105, 35), (100, 116, 35) and (119, 175, 40). For integer values $x$, $y$, $h$ and $0 < x < y < 1\\,000\\,000$, how many triplets ($x$, $y$, $h$) produce integer solutions for $w$? # --hints-- `integerLadders()` should return `210139`. ```js assert.strictEqual(integerLadders(), 210139); ``` # --seed-- ## --seed-contents-- ```js function integerLadders() { return true; } integerLadders(); ``` # --solutions-- ```js // solution required ```