--- id: 5900f4a51000cf542c50ffb7 title: 'Problem 312: Cyclic paths on Sierpiński graphs' challengeType: 5 forumTopicId: 301968 dashedName: problem-312-cyclic-paths-on-sierpiski-graphs --- # --description-- - A Sierpiński graph of order-1 ($S_1$) is an equilateral triangle. - $S_{n + 1}$ is obtained from $S_n$ by positioning three copies of $S_n$ so that every pair of copies has one common corner. Sierpinski graphs of order-1 to order-5 Let $C(n)$ be the number of cycles that pass exactly once through all the vertices of $S_n$. For example, $C(3) = 8$ because eight such cycles can be drawn on $S_3$, as shown below: eight cycles that pass exactly once through all vertices of S_3 It can also be verified that: $$\begin{align} & C(1) = C(2) = 1 \\\\ & C(5) = 71\\,328\\,803\\,586\\,048 \\\\ & C(10 000)\bmod {10}^8 = 37\\,652\\,224 \\\\ & C(10 000)\bmod {13}^8 = 617\\,720\\,485 \\\\ \end{align}$$ Find $C(C(C(10\\,000)))\bmod {13}^8$. # --hints-- `pathsOnSierpinskiGraphs()` should return `324681947`. ```js assert.strictEqual(pathsOnSierpinskiGraphs(), 324681947); ``` # --seed-- ## --seed-contents-- ```js function pathsOnSierpinskiGraphs() { return true; } pathsOnSierpinskiGraphs(); ``` # --solutions-- ```js // solution required ```