--- id: 5900f4a81000cf542c50ffbb title: 'Problem 316: Numbers in decimal expansions' challengeType: 5 forumTopicId: 301972 dashedName: problem-316-numbers-in-decimal-expansions --- # --description-- Let $p = p_1 p_2 p_3 \ldots$ be an infinite sequence of random digits, selected from {0,1,2,3,4,5,6,7,8,9} with equal probability. It can be seen that $p$ corresponds to the real number $0.p_1 p_2 p_3 \ldots$. It can also be seen that choosing a random real number from the interval [0,1) is equivalent to choosing an infinite sequence of random digits selected from {0,1,2,3,4,5,6,7,8,9} with equal probability. For any positive integer $n$ with $d$ decimal digits, let $k$ be the smallest index such that $p_k, p_{k + 1}, \ldots p_{k + d - 1}$ are the decimal digits of $n$, in the same order. Also, let $g(n)$ be the expected value of $k$; it can be proven that $g(n)$ is always finite and, interestingly, always an integer number. For example, if $n = 535$, then for $p = 31415926\mathbf{535}897\ldots$, we get $k = 9$ for $p = 35528714365004956000049084876408468\mathbf{535}4\ldots$, we get $k = 36$ etc and we find that $g(535) = 1008$. Given that $\displaystyle\sum_{n = 2}^{999} g\left(\left\lfloor\frac{{10}^6}{n}\right\rfloor\right) = 27280188$, find $\displaystyle\sum_{n = 2}^{999\\,999} g\left(\left\lfloor\frac{{10}^{16}}{n}\right\rfloor\right)$. **Note:** $\lfloor x\rfloor$ represents the floor function. # --hints-- `numbersInDecimalExpansion()` should return `542934735751917760`. ```js assert.strictEqual(numbersInDecimalExpansion(), 542934735751917760); ``` # --seed-- ## --seed-contents-- ```js function numbersInDecimalExpansion() { return true; } numbersInDecimalExpansion(); ``` # --solutions-- ```js // solution required ```