--- id: 5900f4ab1000cf542c50ffbd title: 'Problem 318: 2011 nines' challengeType: 5 forumTopicId: 301974 dashedName: problem-318-2011-nines --- # --description-- Consider the real number $\sqrt{2} + \sqrt{3}$. When we calculate the even powers of $\sqrt{2} + \sqrt{3}$ we get: $$\begin{align} & {(\sqrt{2} + \sqrt{3})}^2 = 9.898979485566356\ldots \\\\ & {(\sqrt{2} + \sqrt{3})}^4 = 97.98979485566356\ldots \\\\ & {(\sqrt{2} + \sqrt{3})}^6 = 969.998969071069263\ldots \\\\ & {(\sqrt{2} + \sqrt{3})}^8 = 9601.99989585502907\ldots \\\\ & {(\sqrt{2} + \sqrt{3})}^{10} = 95049.999989479221\ldots \\\\ & {(\sqrt{2} + \sqrt{3})}^{12} = 940897.9999989371855\ldots \\\\ & {(\sqrt{2} + \sqrt{3})}^{14} = 9313929.99999989263\ldots \\\\ & {(\sqrt{2} + \sqrt{3})}^{16} = 92198401.99999998915\ldots \\\\ \end{align}$$ It looks like that the number of consecutive nines at the beginning of the fractional part of these powers is non-decreasing. In fact it can be proven that the fractional part of ${(\sqrt{2} + \sqrt{3})}^{2n}$ approaches 1 for large $n$. Consider all real numbers of the form $\sqrt{p} + \sqrt{q}$ with $p$ and $q$ positive integers and $p < q$, such that the fractional part of ${(\sqrt{p} + \sqrt{q})}^{2n}$ approaches 1 for large $n$. Let $C(p,q,n)$ be the number of consecutive nines at the beginning of the fractional part of ${(\sqrt{p} + \sqrt{q})}^{2n}$. Let $N(p,q)$ be the minimal value of $n$ such that $C(p,q,n) ≥ 2011$. Find $\sum N(p,q)$ for $p + q ≤ 2011$. # --hints-- `twoThousandElevenNines()` should return `709313889`. ```js assert.strictEqual(twoThousandElevenNines(), 709313889); ``` # --seed-- ## --seed-contents-- ```js function twoThousandElevenNines() { return true; } twoThousandElevenNines(); ``` # --solutions-- ```js // solution required ```