--- id: 5900f4c11000cf542c50ffd3 title: 'Problem 341: Golomb''s self-describing sequence' challengeType: 5 forumTopicId: 302000 dashedName: problem-341-golombs-self-describing-sequence --- # --description-- The Golomb's self-describing sequence ($G(n)$) is the only nondecreasing sequence of natural numbers such that $n$ appears exactly $G(n)$ times in the sequence. The values of $G(n)$ for the first few $n$ are $$\begin{array}{c} n & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & \ldots \\\\ G(n) & 1 & 2 & 2 & 3 & 3 & 4 & 4 & 4 & 5 & 5 & 5 & 6 & 6 & 6 & 6 & \ldots \end{array}$$ You are given that $G({10}^3) = 86$, $G({10}^6) = 6137$. You are also given that $\sum G(n^3) = 153\\,506\\,976$ for $1 ≤ n < {10}^3$. Find $\sum G(n^3)$ for $1 ≤ n < {10}^6$. # --hints-- `golombsSequence()` should return `56098610614277016`. ```js assert.strictEqual(golombsSequence(), 56098610614277016); ``` # --seed-- ## --seed-contents-- ```js function golombsSequence() { return true; } golombsSequence(); ``` # --solutions-- ```js // solution required ```