--- id: 5900f4c31000cf542c50ffd5 title: 'Problem 342: The totient of a square is a cube' challengeType: 5 forumTopicId: 302001 dashedName: problem-342-the-totient-of-a-square-is-a-cube --- # --description-- Consider the number 50. ${50}^2 = 2500 = 2^2 × 5^4$, so $φ(2500) = 2 × 4 × 5^3 = 8 × 5^3 = 2^3 × 5^3$. $φ$ denotes Euler's totient function. So 2500 is a square and $φ(2500)$ is a cube. Find the sum of all numbers $n$, $1 < n < {10}^{10}$ such that $φ(n^2)$ is a cube. # --hints-- `totientOfSquare()` should return `5943040885644`. ```js assert.strictEqual(totientOfSquare(), 5943040885644); ``` # --seed-- ## --seed-contents-- ```js function totientOfSquare() { return true; } totientOfSquare(); ``` # --solutions-- ```js // solution required ```