--- id: 5900f4d11000cf542c50ffe4 title: 'Problem 357: Prime generating integers' challengeType: 5 forumTopicId: 302017 dashedName: problem-357-prime-generating-integers --- # --description-- Consider the divisors of 30: 1, 2, 3, 5, 6, 10, 15, 30. It can be seen that for every divisor $d$ of 30, $d + \frac{30}{d}$ is prime. Find the sum of all positive integers $n$ not exceeding $100\\,000\\,000$ such that for every divisor $d$ of $n$, $d + \frac{n}{d}$ is prime. # --hints-- `primeGeneratingIntegers()` should return `1739023853137`. ```js assert.strictEqual(primeGeneratingIntegers(), 1739023853137); ``` # --seed-- ## --seed-contents-- ```js function primeGeneratingIntegers() { return true; } primeGeneratingIntegers(); ``` # --solutions-- ```js // solution required ```