--- id: 5900f4d41000cf542c50ffe7 title: 'Problem 360: Scary Sphere' challengeType: 5 forumTopicId: 302021 dashedName: problem-360-scary-sphere --- # --description-- Given two points ($x_1$, $y_1$, $z_1$) and ($x_2$, $y_2$, $z_2$) in three dimensional space, the Manhattan distance between those points is defined as $|x_1 - x_2| + |y_1 - y_2| + |z_1 - z_2|$. Let $C(r)$ be a sphere with radius $r$ and center in the origin $O(0, 0, 0)$. Let $I(r)$ be the set of all points with integer coordinates on the surface of $C(r)$. Let $S(r)$ be the sum of the Manhattan distances of all elements of $I(r)$ to the origin $O$. E.g. $S(45)=34518$. Find $S({10}^{10})$. # --hints-- `scarySphere()` should return `878825614395267100`. ```js assert.strictEqual(scarySphere(), 878825614395267100); ``` # --seed-- ## --seed-contents-- ```js function scarySphere() { return true; } scarySphere(); ``` # --solutions-- ```js // solution required ```