--- id: 5900f4d61000cf542c50ffe9 title: 'Problem 362: Squarefree factors' challengeType: 5 forumTopicId: 302023 dashedName: problem-362-squarefree-factors --- # --description-- Consider the number 54. 54 can be factored in 7 distinct ways into one or more factors larger than 1: $$54, 2 × 27, 3 × 18, 6 × 9, 3 × 3 × 6, 2 × 3 × 9 \text{ and } 2 × 3 × 3 × 3$$ If we require that the factors are all squarefree only two ways remain: $3 × 3 × 6$ and $2 × 3 × 3 × 3$. Let's call $Fsf(n)$ the number of ways $n$ can be factored into one or more squarefree factors larger than 1, so $Fsf(54) = 2$. Let $S(n)$ be $\sum Fsf(k)$ for $k = 2$ to $n$. $S(100) = 193$. Find $S(10\\,000\\,000\\,000)$. # --hints-- `squarefreeFactors()` should return `457895958010`. ```js assert.strictEqual(squarefreeFactors(), 457895958010); ``` # --seed-- ## --seed-contents-- ```js function squarefreeFactors() { return true; } squarefreeFactors(); ``` # --solutions-- ```js // solution required ```