--- id: 5900f4e11000cf542c50fff3 title: 'Problem 372: Pencils of rays' challengeType: 5 forumTopicId: 302034 dashedName: problem-372-pencils-of-rays --- # --description-- Let $R(M, N)$ be the number of lattice points ($x$, $y$) which satisfy $M \lt x \le N$, $M \lt y \le N$ and $\left\lfloor\frac{y^2}{x^2}\right\rfloor$ is odd. We can verify that $R(0, 100) = 3\\,019$ and $R(100, 10\\,000) = 29\\,750\\,422$. Find $R(2 \times {10}^6, {10}^9)$. **Note:** $\lfloor x\rfloor$ represents the floor function. # --hints-- `pencilsOfRays()` should return `301450082318807040`. ```js assert.strictEqual(pencilsOfRays(), 301450082318807040); ``` # --seed-- ## --seed-contents-- ```js function pencilsOfRays() { return true; } pencilsOfRays(); ``` # --solutions-- ```js // solution required ```