--- id: 5900f4e41000cf542c50fff5 title: 'Problem 375: Minimum of subsequences' challengeType: 5 forumTopicId: 302037 dashedName: problem-375-minimum-of-subsequences --- # --description-- Let $S_n$ be an integer sequence produced with the following pseudo-random number generator: $$\begin{align} S_0 & = 290\\,797 \\\\ S_{n + 1} & = {S_n}^2\bmod 50\\,515\\,093 \end{align}$$ Let $A(i, j)$ be the minimum of the numbers $S_i, S_{i + 1}, \ldots, S_j$ for $i ≤ j$. Let $M(N) = \sum A(i, j)$ for $1 ≤ i ≤ j ≤ N$. We can verify that $M(10) = 432\\,256\\,955$ and $M(10\\,000) = 3\\,264\\,567\\,774\\,119$. Find $M(2\\,000\\,000\\,000)$. # --hints-- `minimumOfSubsequences()` should return `7435327983715286000`. ```js assert.strictEqual(minimumOfSubsequences(), 7435327983715286000); ``` # --seed-- ## --seed-contents-- ```js function minimumOfSubsequences() { return true; } minimumOfSubsequences(); ``` # --solutions-- ```js // solution required ```