--- id: 5900f4e61000cf542c50fff9 title: 'Problem 378: Triangle Triples' challengeType: 5 forumTopicId: 302040 dashedName: problem-378-triangle-triples --- # --description-- Let $T(n)$ be the $n^{\text{th}}$ triangle number, so $T(n) = \frac{n(n + 1)}{2}$. Let $dT(n)$ be the number of divisors of $T(n)$. E.g.: $T(7) = 28$ and $dT(7) = 6$. Let $Tr(n)$ be the number of triples ($i$, $j$, $k$) such that $1 ≤ i < j < k ≤ n$ and $dT(i) > dT(j) > dT(k)$. $Tr(20) = 14$, $Tr(100) = 5\\,772$ and $Tr(1000) = 11\\,174\\,776$. Find $Tr(60\\,000\\,000)$. Give the last 18 digits of your answer. # --hints-- `triangleTriples()` should return `147534623725724700`. ```js assert.strictEqual(triangleTriples(), 147534623725724700); ``` # --seed-- ## --seed-contents-- ```js function triangleTriples() { return true; } triangleTriples(); ``` # --solutions-- ```js // solution required ```