--- id: 5900f4ed1000cf542c50ffff title: 'Problem 383: Divisibility comparison between factorials' challengeType: 5 forumTopicId: 302047 dashedName: problem-383-divisibility-comparison-between-factorials --- # --description-- Let $f_5(n)$ be the largest integer $x$ for which $5^x$ divides $n$. For example, $f_5(625\\,000) = 7$. Let $T_5(n)$ be the number of integers $i$ which satisfy $f_5((2 \times i - 1)!) < 2 \times f_5(i!)$ and $1 ≤ i ≤ n$. It can be verified that $T_5({10}^3) = 68$ and $T_5({10}^9) = 2\\,408\\,210$. Find $T_5({10}^{18})$. # --hints-- `factorialDivisibilityComparison()` should return `22173624649806`. ```js assert.strictEqual(factorialDivisibilityComparison(), 22173624649806); ``` # --seed-- ## --seed-contents-- ```js function factorialDivisibilityComparison() { return true; } factorialDivisibilityComparison(); ``` # --solutions-- ```js // solution required ```