--- id: 5900f4ed1000cf542c50fffe title: 'Problem 384: Rudin-Shapiro sequence' challengeType: 5 forumTopicId: 302048 dashedName: problem-384-rudin-shapiro-sequence --- # --description-- Define the sequence $a(n)$ as the number of adjacent pairs of ones in the binary expansion of $n$ (possibly overlapping). E.g.: $a(5) = a({101}_2) = 0$, $a(6) = a({110}_2) = 1$, $a(7) = a({111}_2) = 2$ Define the sequence $b(n) = {(-1)}^{a(n)}$. This sequence is called the Rudin-Shapiro sequence. Also consider the summatory sequence of $b(n)$: $s(n) = \displaystyle\sum_{i = 0}^{n} b(i)$. The first couple of values of these sequences are: $$\begin{array}{lr} n & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\\\ a(n) & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 2 \\\\ b(n) & 1 & 1 & 1 & -1 & 1 & 1 & -1 & 1 \\\\ s(n) & 1 & 2 & 3 & 2 & 3 & 4 & 3 & 4 \end{array}$$ The sequence $s(n)$ has the remarkable property that all elements are positive and every positive integer $k$ occurs exactly $k$ times. Define $g(t, c)$, with $1 ≤ c ≤ t$, as the index in $s(n)$ for which $t$ occurs for the $c$'th time in $s(n)$. E.g.: $g(3, 3) = 6$, $g(4, 2) = 7$ and $g(54321, 12345) = 1\\,220\\,847\\,710$. Let $F(n)$ be the fibonacci sequence defined by: $$\begin{align} & F(0) = F(1) = 1 \text{ and} \\\\ & F(n) = F(n - 1) + F(n - 2) \text{ for } n > 1. \end{align}$$ Define $GF(t) = g(F(t), F(t - 1))$. Find $\sum GF(t)$ for$ 2 ≤ t ≤ 45$. # --hints-- `rudinShapiroSequence()` should return `3354706415856333000`. ```js assert.strictEqual(rudinShapiroSequence(), 3354706415856333000); ``` # --seed-- ## --seed-contents-- ```js function rudinShapiroSequence() { return true; } rudinShapiroSequence(); ``` # --solutions-- ```js // solution required ```