--- id: 5900f4ef1000cf542c510001 title: 'Problem 386: Maximum length of an antichain' challengeType: 5 forumTopicId: 302050 dashedName: problem-386-maximum-length-of-an-antichain --- # --description-- Let $n$ be an integer and $S(n)$ be the set of factors of $n$. A subset $A$ of $S(n)$ is called an antichain of $S(n)$ if $A$ contains only one element or if none of the elements of $A$ divides any of the other elements of $A$. For example: $S(30) = \\{1, 2, 3, 5, 6, 10, 15, 30\\}$ $\\{2, 5, 6\\}$ is not an antichain of $S(30)$. $\\{2, 3, 5\\}$ is an antichain of $S(30)$. Let $N(n)$ be the maximum length of an antichain of $S(n)$. Find $\sum N(n)$ for $1 ≤ n ≤ {10}^8$ # --hints-- `maximumLengthOfAntichain()` should return `528755790`. ```js assert.strictEqual(maximumLengthOfAntichain(), 528755790); ``` # --seed-- ## --seed-contents-- ```js function maximumLengthOfAntichain() { return true; } maximumLengthOfAntichain(); ``` # --solutions-- ```js // solution required ```