--- id: 5900f4fd1000cf542c51000f title: 'Problem 401: Sum of squares of divisors' challengeType: 5 forumTopicId: 302069 dashedName: problem-401-sum-of-squares-of-divisors --- # --description-- The divisors of 6 are 1, 2, 3 and 6. The sum of the squares of these numbers is $1 + 4 + 9 + 36 = 50$. Let $\sigma_2(n)$ represent the sum of the squares of the divisors of $n$. Thus $\sigma_2(6) = 50$. Let $\Sigma_2$ represent the summatory function of $\sigma_2$, that is $\Sigma_2(n) = \sum \sigma_2(i)$ for $i=1$ to $n$. The first 6 values of $\Sigma_2$ are: 1, 6, 16, 37, 63 and 113. Find $\Sigma_2({10}^{15})$ modulo ${10}^9$. # --hints-- `sumOfSquaresDivisors()` should return `281632621`. ```js assert.strictEqual(sumOfSquaresDivisors(), 281632621); ``` # --seed-- ## --seed-contents-- ```js function sumOfSquaresDivisors() { return true; } sumOfSquaresDivisors(); ``` # --solutions-- ```js // solution required ```