--- id: 5900f4ff1000cf542c510011 title: 'Problem 402: Integer-valued polynomials' challengeType: 5 forumTopicId: 302070 dashedName: problem-402-integer-valued-polynomials --- # --description-- It can be shown that the polynomial $n^4 + 4n^3 + 2n^2 + 5n$ is a multiple of 6 for every integer $n$. It can also be shown that 6 is the largest integer satisfying this property. Define $M(a, b, c)$ as the maximum $m$ such that $n^4 + an^3 + bn^2 + cn$ is a multiple of $m$ for all integers $n$. For example, $M(4, 2, 5) = 6$. Also, define $S(N)$ as the sum of $M(a, b, c)$ for all $0 < a, b, c ≤ N$. We can verify that $S(10) = 1\\,972$ and $S(10\\,000) = 2\\,024\\,258\\,331\\,114$. Let $F_k$ be the Fibonacci sequence: - $F_0 = 0$, $F_1 = 1$ and - $F_k = F_{k - 1} + F_{k - 2}$ for $k ≥ 2$. Find the last 9 digits of $\sum S(F_k)$ for $2 ≤ k ≤ 1\\,234\\,567\\,890\\,123$. # --hints-- `integerValuedPolynomials()` should return `356019862`. ```js assert.strictEqual(integerValuedPolynomials(), 356019862); ``` # --seed-- ## --seed-contents-- ```js function integerValuedPolynomials() { return true; } integerValuedPolynomials(); ``` # --solutions-- ```js // solution required ```