--- id: 5900f5001000cf542c510012 title: 'Problem 404: Crisscross Ellipses' challengeType: 5 forumTopicId: 302072 dashedName: problem-404-crisscross-ellipses --- # --description-- $E_a$ is an ellipse with an equation of the form $x^2 + 4y^2 = 4a^2$. $E_a'$ is the rotated image of $E_a$ by $θ$ degrees counterclockwise around the origin $O(0, 0)$ for $0° < θ < 90°$. ellipse E_a and ellipse rotated by θ degrees E_a' $b$ is the distance to the origin of the two intersection points closest to the origin and $c$ is the distance of the two other intersection points. We call an ordered triplet ($a$, $b$, $c$) a canonical ellipsoidal triplet if $a$, $b$ and $c$ are positive integers. For example, (209, 247, 286) is a canonical ellipsoidal triplet. Let $C(N)$ be the number of distinct canonical ellipsoidal triplets ($a$, $b$, $c$) for $a ≤ N$. It can be verified that $C({10}^3) = 7$, $C({10}^4) = 106$ and $C({10}^6) = 11\\,845$. Find $C({10}^{17})$. # --hints-- `crisscrossEllipses()` should return `1199215615081353`. ```js assert.strictEqual(crisscrossEllipses(), 1199215615081353); ``` # --seed-- ## --seed-contents-- ```js function crisscrossEllipses() { return true; } crisscrossEllipses(); ``` # --solutions-- ```js // solution required ```