--- id: 5900f5041000cf542c510016 title: 'Problem 407: Idempotents' challengeType: 5 forumTopicId: 302075 dashedName: problem-407-idempotents --- # --description-- If we calculate $a^2\bmod 6$ for $0 ≤ a ≤ 5$ we get: 0, 1, 4, 3, 4, 1. The largest value of a such that $a^2 ≡ a\bmod 6$ is $4$. Let's call $M(n)$ the largest value of $a < n$ such that $a^2 ≡ a (\text{mod } n)$. So $M(6) = 4$. Find $\sum M(n)$ for $1 ≤ n ≤ {10}^7$. # --hints-- `idempotents()` should return `39782849136421`. ```js assert.strictEqual(idempotents(), 39782849136421); ``` # --seed-- ## --seed-contents-- ```js function idempotents() { return true; } idempotents(); ``` # --solutions-- ```js // solution required ```