--- id: 5900f5091000cf542c51001b title: 'Problem 408: Admissible paths through a grid' challengeType: 5 forumTopicId: 302076 dashedName: problem-408-admissible-paths-through-a-grid --- # --description-- Let's call a lattice point ($x$, $y$) inadmissible if $x$, $y$ and $x + y$ are all positive perfect squares. For example, (9, 16) is inadmissible, while (0, 4), (3, 1) and (9, 4) are not. Consider a path from point ($x_1$, $y_1$) to point ($x_2$, $y_2$) using only unit steps north or east. Let's call such a path admissible if none of its intermediate points are inadmissible. Let $P(n)$ be the number of admissible paths from (0, 0) to ($n$, $n$). It can be verified that $P(5) = 252$, $P(16) = 596\\,994\\,440$ and $P(1\\,000)\bmod 1\\,000\\,000\\,007 = 341\\,920\\,854$. Find $P(10\\,000\\,000)\bmod 1\\,000\\,000\\,007$. # --hints-- `admissiblePaths()` should return `299742733`. ```js assert.strictEqual(admissiblePaths(), 299742733); ``` # --seed-- ## --seed-contents-- ```js function admissiblePaths() { return true; } admissiblePaths(); ``` # --solutions-- ```js // solution required ```