--- id: 5900f5061000cf542c510017 title: 'Problem 409: Nim Extreme' challengeType: 5 forumTopicId: 302077 dashedName: problem-409-nim-extreme --- # --description-- Let $n$ be a positive integer. Consider nim positions where: - There are $n$ non-empty piles. - Each pile has size less than $2^n$. - No two piles have the same size. Let $W(n)$ be the number of winning nim positions satisfying the above conditions (a position is winning if the first player has a winning strategy). For example, $W(1) = 1$, $W(2) = 6$, $W(3) = 168$, $W(5) = 19\\,764\\,360$ and $W(100)\bmod 1\\,000\\,000\\,007 = 384\\,777\\,056$. Find $W(10\\,000\\,000)\bmod 1\\,000\\,000\\,007$. # --hints-- `nimExtreme()` should return `253223948`. ```js assert.strictEqual(nimExtreme(), 253223948); ``` # --seed-- ## --seed-contents-- ```js function nimExtreme() { return true; } nimExtreme(); ``` # --solutions-- ```js // solution required ```