--- id: 5900f50f1000cf542c510021 title: 'Problem 418: Factorisation triples' challengeType: 5 forumTopicId: 302087 dashedName: problem-418-factorisation-triples --- # --description-- Let $n$ be a positive integer. An integer triple ($a$, $b$, $c$) is called a factorisation triple of $n$ if: - $1 ≤ a ≤ b ≤ c$ - $a \times b \times c = n$. Define $f(n)$ to be $a + b + c$ for the factorisation triple ($a$, $b$, $c$) of $n$ which minimises $\frac{c}{a}$. One can show that this triple is unique. For example, $f(165) = 19$, $f(100\\,100) = 142$ and $f(20!) = 4\\,034\\,872$. Find $f(43!)$. # --hints-- `factorisationTriples()` should return `1177163565297340400`. ```js assert.strictEqual(factorisationTriples(), 1177163565297340400); ``` # --seed-- ## --seed-contents-- ```js function factorisationTriples() { return true; } factorisationTriples(); ``` # --solutions-- ```js // solution required ```