--- id: 5900f5111000cf542c510023 title: 'Problem 420: 2x2 positive integer matrix' challengeType: 5 forumTopicId: 302090 dashedName: problem-420-2x2-positive-integer-matrix --- # --description-- A positive integer matrix is a matrix whose elements are all positive integers. Some positive integer matrices can be expressed as a square of a positive integer matrix in two different ways. Here is an example: $$\begin{pmatrix} 40 & 12 \\\\ 48 & 40 \end{pmatrix} = {\begin{pmatrix} 2 & 3 \\\\ 12 & 2 \end{pmatrix}}^2 = {\begin{pmatrix} 6 & 1 \\\\ 4 & 6 \end{pmatrix}}^2$$ We define $F(N)$ as the number of the 2x2 positive integer matrices which have a trace less than N and which can be expressed as a square of a positive integer matrix in two different ways. We can verify that $F(50) = 7$ and $F(1000) = 1019$. Find $F({10}^7)$. # --hints-- `positiveIntegerMatrix()` should return `145159332`. ```js assert.strictEqual(positiveIntegerMatrix(), 145159332); ``` # --seed-- ## --seed-contents-- ```js function positiveIntegerMatrix() { return true; } positiveIntegerMatrix(); ``` # --solutions-- ```js // solution required ```