--- id: 5900f5181000cf542c51002a title: 'Problem 427: n-sequences' challengeType: 5 forumTopicId: 302097 dashedName: problem-427-n-sequences --- # --description-- A sequence of integers $S = \\{s_i\\}$ is called an $n$-sequence if it has $n$ elements and each element $s_i$ satisfies $1 ≤ s_i ≤ n$. Thus there are $n^n$ distinct $n$-sequences in total. For example, the sequence $S = \\{1, 5, 5, 10, 7, 7, 7, 2, 3, 7\\}$ is a 10-sequence. For any sequence $S$, let $L(S)$ be the length of the longest contiguous subsequence of $S$ with the same value. For example, for the given sequence $S$ above, $L(S) = 3$, because of the three consecutive 7's. Let $f(n) = \sum L(S)$ for all $n$-sequences $S$. For example, $f(3) = 45$, $f(7) = 1\\,403\\,689$ and $f(11) = 481\\,496\\,895\\,121$. Find $f(7\\,500\\,000)\bmod 1\\,000\\,000\\,009$. # --hints-- `nSequences()` should return `97138867`. ```js assert.strictEqual(nSequences(), 97138867); ``` # --seed-- ## --seed-contents-- ```js function nSequences() { return true; } nSequences(); ``` # --solutions-- ```js // solution required ```