--- id: 5900f5191000cf542c51002b title: 'Problem 428: Necklace of Circles' challengeType: 5 forumTopicId: 302098 dashedName: problem-428-necklace-of-circles --- # --description-- Let $a$, $b$ and $c$ be positive numbers. Let $W$, $X$, $Y$, $Z$ be four collinear points where $|WX| = a$, $|XY| = b$, $|YZ| = c$ and $|WZ| = a + b + c$. Let $C_{\text{in}}$ be the circle having the diameter $XY$. Let $C_{\text{out}}$ be the circle having the diameter $WZ$. The triplet ($a$, $b$, $c$) is called a *necklace triplet* if you can place $k ≥ 3$ distinct circles $C_1, C_2, \ldots, C_k$ such that: - $C_i$ has no common interior points with any $C_j$ for $1 ≤ i$, $j ≤ k$ and $i ≠ j$, - $C_i$ is tangent to both $C_{\text{in}}$ and $C_{\text{out}}$ for $1 ≤ i ≤ k$, - $C_i$ is tangent to $C_{i + 1}$ for $1 ≤ i < k$, and - $C_k$ is tangent to $C_1$. For example, (5, 5, 5) and (4, 3, 21) are necklace triplets, while it can be shown that (2, 2, 5) is not. a visual representation of a necklace triplet Let $T(n)$ be the number of necklace triplets $(a, b, c)$ such that $a$, $b$ and $c$ are positive integers, and $b ≤ n$. For example, $T(1) = 9$, $T(20) = 732$ and $T(3\\,000) = 438\\,106$. Find $T(1\\,000\\,000\\,000)$. # --hints-- `necklace(1000000000)` should return `747215561862`. ```js assert.strictEqual(necklace(1000000000), 747215561862); ``` # --seed-- ## --seed-contents-- ```js function necklace(n) { return true; } necklace(1000000000) ``` # --solutions-- ```js // solution required ```