--- id: 5900f5201000cf542c510032 title: 'Problem 435: Polynomials of Fibonacci numbers' challengeType: 5 forumTopicId: 302106 dashedName: problem-435-polynomials-of-fibonacci-numbers --- # --description-- The Fibonacci numbers $\\{f_n, n ≥ 0\\}$ are defined recursively as $f_n = f_{n - 1} + f_{n - 2}$ with base cases $f_0 = 0$ and $f_1 = 1$. Define the polynomials $\\{F_n, n ≥ 0\\}$ as $F_n(x) = \displaystyle\sum_{i = 0}^n f_ix^i$. For example, $F_7(x) = x + x^2 + 2x^3 + 3x^4 + 5x^5 + 8x^6 + 13x^7$, and $F_7(11) = 268\\,357\\,683$. Let $n = {10}^{15}$. Find the sum $\displaystyle\sum_{x = 0}^{100} F_n(x)$ and give your answer modulo $1\\,307\\,674\\,368\\,000 \\, (= 15!)$. # --hints-- `polynomialsOfFibonacciNumbers()` should return `252541322550`. ```js assert.strictEqual(polynomialsOfFibonacciNumbers(), 252541322550); ``` # --seed-- ## --seed-contents-- ```js function polynomialsOfFibonacciNumbers() { return true; } polynomialsOfFibonacciNumbers(); ``` # --solutions-- ```js // solution required ```