--- id: 5900f5231000cf542c510034 title: 'Problem 438: Integer part of polynomial equation''s solutions' challengeType: 5 forumTopicId: 302109 dashedName: problem-438-integer-part-of-polynomial-equations-solutions --- # --description-- For an $n$-tuple of integers $t = (a_1, \ldots, a_n)$, let $(x_1, \ldots, x_n)$ be the solutions of the polynomial equation $x^n + a_1x^{n - 1} + a_2x^{n - 2} + \ldots + a_{n - 1}x + a_n = 0$. Consider the following two conditions: - $x_1, \ldots, x_n$ are all real. - If $x_1, ..., x_n$ are sorted, $⌊x_i⌋ = i$ for $1 ≤ i ≤ n$. ($⌊·⌋:$ floor function.) In the case of $n = 4$, there are 12 $n$-tuples of integers which satisfy both conditions. We define $S(t)$ as the sum of the absolute values of the integers in $t$. For $n = 4$ we can verify that $\sum S(t) = 2087$ for all $n$-tuples $t$ which satisfy both conditions. Find $\sum S(t)$ for $n = 7$. # --hints-- `polynomialIntegerPart()` should return `2046409616809`. ```js assert.strictEqual(polynomialIntegerPart(), 2046409616809); ``` # --seed-- ## --seed-contents-- ```js function polynomialIntegerPart() { return true; } polynomialIntegerPart(); ``` # --solutions-- ```js // solution required ```