--- id: 5900f5241000cf542c510037 title: 'Problem 440: GCD and Tiling' challengeType: 5 forumTopicId: 302112 dashedName: problem-440-gcd-and-tiling --- # --description-- We want to tile a board of length $n$ and height 1 completely, with either 1 × 2 blocks or 1 × 1 blocks with a single decimal digit on top: ten blocks 1x1 with single decimal digit on top, and 1x2 block For example, here are some of the ways to tile a board of length $n = 8$: examples of ways to tile a board of length n = 8 Let $T(n)$ be the number of ways to tile a board of length $n$ as described above. For example, $T(1) = 10$ and $T(2) = 101$. Let $S(L)$ be the triple sum $\sum_{a, b, c} gcd(T(c^a), T(c^b))$ for $1 ≤ a, b, c ≤ L$. For example: $$\begin{align} & S(2) = 10\\,444 \\\\ & S(3) = 1\\,292\\,115\\,238\\,446\\,807\\,016\\,106\\,539\\,989 \\\\ & S(4)\bmod 987\\,898\\,789 = 670\\,616\\,280. \end{align}$$ Find $S(2000)\bmod 987\\,898\\,789$. # --hints-- `gcdAndTiling()` should return `970746056`. ```js assert.strictEqual(gcdAndTiling(), 970746056); ``` # --seed-- ## --seed-contents-- ```js function gcdAndTiling() { return true; } gcdAndTiling(); ``` # --solutions-- ```js // solution required ```