--- id: 5900f52c1000cf542c51003d title: 'Problem 446: Retractions B' challengeType: 5 forumTopicId: 302118 dashedName: problem-446-retractions-b --- # --description-- For every integer $n > 1$, the family of functions $f_{n, a, b}$ is defined by: $f_{n, a, b}(x) ≡ ax + b\bmod n$ for $a, b, x$ integer and $0 \lt a \lt n$, $0 \le b \lt n$, $0 \le x \lt n$. We will call $f_{n, a, b}$ a retraction if $f_{n, a, b}(f_{n, a, b}(x)) \equiv f_{n, a, b}(x)\bmod n$ for every $0 \le x \lt n$. Let $R(n)$ be the number of retractions for $n$. $F(N) = \displaystyle\sum_{n = 1}^N R(n^4 + 4)$. $F(1024) = 77\\,532\\,377\\,300\\,600$. Find $F({10}^7)$. Give your answer modulo $1\\,000\\,000\\,007$. # --hints-- `retractionsB()` should return `907803852`. ```js assert.strictEqual(retractionsB(), 907803852); ``` # --seed-- ## --seed-contents-- ```js function retractionsB() { return true; } retractionsB(); ``` # --solutions-- ```js // solution required ```