--- id: 5900f5311000cf542c510044 title: 'Problem 453: Lattice Quadrilaterals' challengeType: 5 forumTopicId: 302126 dashedName: problem-453-lattice-quadrilaterals --- # --description-- A simple quadrilateral is a polygon that has four distinct vertices, has no straight angles and does not self-intersect. Let $Q(m, n)$ be the number of simple quadrilaterals whose vertices are lattice points with coordinates ($x$, $y$) satisfying $0 ≤ x ≤ m$ and $0 ≤ y ≤ n$. For example, $Q(2, 2) = 94$ as can be seen below: 94 quadrilaterals whose vertices are lattice points with coordinates (x, y) satiffying 0 ≤ x ≤ m and 0 ≤ y ≤ n It can also be verified that $Q(3, 7) = 39\\,590$, $Q(12, 3) = 309\\,000$ and $Q(123, 45) = 70\\,542\\,215\\,894\\,646$. Find $Q(12\\,345, 6\\,789)\bmod 135\\,707\\,531$. # --hints-- `latticeQuadrilaterals()` should return `104354107`. ```js assert.strictEqual(latticeQuadrilaterals(), 104354107); ``` # --seed-- ## --seed-contents-- ```js function latticeQuadrilaterals() { return true; } latticeQuadrilaterals(); ``` # --solutions-- ```js // solution required ```