--- id: 5900f5331000cf542c510046 title: 'Problem 455: Powers With Trailing Digits' challengeType: 5 forumTopicId: 302129 dashedName: problem-455-powers-with-trailing-digits --- # --description-- Let $f(n)$ be the largest positive integer $x$ less than ${10}^9$ such that the last 9 digits of $n^x$ form the number $x$ (including leading zeros), or zero if no such integer exists. For example: $$\begin{align} & f(4) = 411\\,728\\,896 (4^{411\\,728\\,896} = ...490\underline{411728896}) \\\\ & f(10) = 0 \\\\ & f(157) = 743\\,757 (157^{743\\,757} = ...567\underline{000743757}) \\\\ & Σf(n), 2 ≤ n ≤ 103 = 442\\,530\\,011\\,399 \end{align}$$ Find $\sum f(n)$, $2 ≤ n ≤ {10}^6$. # --hints-- `powersWithTrailingDigits()` should return `450186511399999`. ```js assert.strictEqual(powersWithTrailingDigits(), 450186511399999); ``` # --seed-- ## --seed-contents-- ```js function powersWithTrailingDigits() { return true; } powersWithTrailingDigits(); ``` # --solutions-- ```js // solution required ```