--- id: 5900f5361000cf542c510048 title: 'Problem 457: A polynomial modulo the square of a prime' challengeType: 5 forumTopicId: 302131 dashedName: problem-457-a-polynomial-modulo-the-square-of-a-prime --- # --description-- Let $f(n) = n^2 - 3n - 1$. Let $p$ be a prime. Let $R(p)$ be the smallest positive integer $n$ such that $f(n)\bmod p^2 = 0$ if such an integer $n$ exists, otherwise $R(p) = 0$. Let $SR(L)$ be $\sum R(p)$ for all primes not exceeding $L$. Find $SR({10}^7)$. # --hints-- `polynomialModuloSquareOfPrime()` should return `2647787126797397000`. ```js assert.strictEqual(polynomialModuloSquareOfPrime(), 2647787126797397000); ``` # --seed-- ## --seed-contents-- ```js function polynomialModuloSquareOfPrime() { return true; } polynomialModuloSquareOfPrime(); ``` # --solutions-- ```js // solution required ```