--- id: 5900f53c1000cf542c51004e title: 'Problem 463: A weird recurrence relation' challengeType: 5 forumTopicId: 302138 dashedName: problem-463-a-weird-recurrence-relation --- # --description-- The function $f$ is defined for all positive integers as follows: $$\begin{align} & f(1) = 1 \\\\ & f(3) = 3 \\\\ & f(2n) = f(n) \\\\ & f(4n + 1) = 2f(2n + 1) - f(n) \\\\ & f(4n + 3) = 3f(2n + 1) - 2f(n) \end{align}$$ The function $S(n)$ is defined as $\sum_{i=1}^{n} f(i)$. $S(8) = 22$ and $S(100) = 3604$. Find $S(3^{37})$. Give the last 9 digits of your answer. # --hints-- `weirdRecurrenceRelation()` should return `808981553`. ```js assert.strictEqual(weirdRecurrenceRelation(), 808981553); ``` # --seed-- ## --seed-contents-- ```js function weirdRecurrenceRelation() { return true; } weirdRecurrenceRelation(); ``` # --solutions-- ```js // solution required ```