--- id: 5900f53d1000cf542c51004f title: 'Problem 464: Möbius function and intervals' challengeType: 5 forumTopicId: 302139 dashedName: problem-464-mbius-function-and-intervals --- # --description-- The Möbius function, denoted $μ(n)$, is defined as: - $μ(n) = (-1)^{ω(n)}$ if $n$ is squarefree (where $ω(n)$ is the number of distinct prime factors of $n$) - $μ(n) = 0$ if $n$ is not squarefree. Let $P(a, b)$ be the number of integers $n$ in the interval $[a, b]$ such that $μ(n) = 1$. Let $N(a, b)$ be the number of integers $n$ in the interval $[a, b]$ such that $μ(n) = -1$. For example, $P(2, 10) = 2$ and $N(2, 10) = 4$. Let $C(n)$ be the number of integer pairs $(a, b)$ such that: - $1 ≤ a ≤ b ≤ n$, - $99 \times N(a, b) ≤ 100 \times P(a, b)$, and - $99 \times P(a, b) ≤ 100 \times N(a, b)$. For example, $C(10) = 13$, $C(500) = 16\\,676$ and $C(10\\,000) = 20\\,155\\,319$. Find $C(20\\,000\\,000)$. # --hints-- `mobiusFunctionAndIntervals()` should return `198775297232878`. ```js assert.strictEqual(mobiusFunctionAndIntervals(), 198775297232878); ``` # --seed-- ## --seed-contents-- ```js function mobiusFunctionAndIntervals() { return true; } mobiusFunctionAndIntervals(); ``` # --solutions-- ```js // solution required ```