--- id: 5900f5411000cf542c510052 title: 'Problem 467: Superinteger' challengeType: 5 forumTopicId: 302142 dashedName: problem-467-superinteger --- # --description-- An integer $s$ is called a superinteger of another integer $n$ if the digits of $n$ form a subsequence of the digits of $s$. For example, 2718281828 is a superinteger of 18828, while 314159 is not a superinteger of 151. Let $p(n)$ be the $n$th prime number, and let $c(n)$ be the $n$th composite number. For example, $p(1) = 2$, $p(10) = 29$, $c(1) = 4$ and $c(10) = 18$. $$\begin{align} & \\{p(i) : i ≥ 1\\} = \\{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, \ldots \\} \\\\ & \\{c(i) : i ≥ 1\\} = \\{4, 6, 8, 9, 10, 12, 14, 15, 16, 18, \ldots \\} \end{align}$$ Let $P^D$ the sequence of the digital roots of $\\{p(i)\\}$ ($C^D$ is defined similarly for $\\{c(i)\\}$): $$\begin{align} & P^D = \\{2, 3, 5, 7, 2, 4, 8, 1, 5, 2, \ldots \\} \\\\ & C^D = \\{4, 6, 8, 9, 1, 3, 5, 6, 7, 9, \ldots \\} \end{align}$$ Let $P_n$ be the integer formed by concatenating the first $n$ elements of $P^D$ ($C_n$ is defined similarly for $C^D$). $$\begin{align} & P_{10} = 2\\,357\\,248\\,152 \\\\ & C_{10} = 4\\,689\\,135\\,679 \end{align}$$ Let $f(n)$ be the smallest positive integer that is a common superinteger of $P_n$ and $C_n$. For example, $f(10) = 2\\,357\\,246\\,891\\,352\\,679$, and $f(100)\bmod 1\\,000\\,000\\,007 = 771\\,661\\,825$. Find $f(10\\,000)\bmod 1\\,000\\,000\\,007$. # --hints-- `superinteger()` should return `775181359`. ```js assert.strictEqual(superinteger(), 775181359); ``` # --seed-- ## --seed-contents-- ```js function superinteger() { return true; } superinteger(); ``` # --solutions-- ```js // solution required ```