--- id: 5900f5411000cf542c510054 title: 'Problem 468: Smooth divisors of binomial coefficients' challengeType: 5 forumTopicId: 302143 dashedName: problem-468-smooth-divisors-of-binomial-coefficients --- # --description-- An integer is called B-smooth if none of its prime factors is greater than $B$. Let $SB(n)$ be the largest B-smooth divisor of $n$. Examples: $$\begin{align} & S_1(10) = 1 \\\\ & S_4(2\\,100) = 12 \\\\ & S_{17}(2\\,496\\,144) = 5\\,712 \end{align}$$ Define $F(n) = \displaystyle\sum_{B = 1}^n \sum_{r = 0}^n S_B(\displaystyle\binom{n}{r})$. Here, $\displaystyle\binom{n}{r}$ denotes the binomial coefficient. Examples: $$\begin{align} & F(11) = 3132 \\\\ & F(1\\,111)\bmod 1\\,000\\,000\\,993 = 706\\,036\\,312 \\\\ & F(111\\,111)\bmod 1\\,000\\,000\\,993 = 22\\,156\\,169 \end{align}$$ Find $F(11\\,111\\,111)\bmod 1\\,000\\,000\\,993$. # --hints-- `smoothDivisorsOfBinomialCoefficients()` should return `852950321`. ```js assert.strictEqual(smoothDivisorsOfBinomialCoefficients(), 852950321); ``` # --seed-- ## --seed-contents-- ```js function smoothDivisorsOfBinomialCoefficients() { return true; } smoothDivisorsOfBinomialCoefficients(); ``` # --solutions-- ```js // solution required ```