--- id: 5900f5431000cf542c510056 title: 'Problem 471: Triangle inscribed in ellipse' challengeType: 5 forumTopicId: 302148 dashedName: problem-471-triangle-inscribed-in-ellipse --- # --description-- The triangle $ΔABC$ is inscribed in an ellipse with equation $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, $0 < 2b < a$, $a$ and $b$ integers. Let $r(a, b)$ be the radius of the incircle of $ΔABC$ when the incircle has center $(2b, 0)$ and $A$ has coordinates $\left(\frac{a}{2}, \frac{\sqrt{3}}{2}b\right)$. For example, $r(3, 1) = \frac{1}{2}, r(6, 2) = 1, r(12, 3) = 2$. triangle ΔABC inscribed in an ellipse, radius of the incircle of ΔABC r(6, 2) = 1 triangle ΔABC inscribed in an ellipse, radius of the incircle of ΔABC r(12, 3) = 2 Let $G(n) = \sum_{a = 3}^n \sum_{b = 1}^{\left\lfloor\frac{a - 1}{2} \right\rfloor} r(a, b)$ You are given $G(10) = 20.59722222$, $G(100) = 19223.60980$ (rounded to 10 significant digits). Find $G({10}^{11})$. Give your answer as a string in scientific notation rounded to 10 significant digits. Use a lowercase `e` to separate mantissa and exponent. For $G(10)$ the answer would have been `2.059722222e1` # --hints-- `triangleInscribedInEllipse()` should return a string. ```js assert(typeof triangleInscribedInEllipse() === 'string'); ``` `triangleInscribedInEllipse()` should return the string `1.895093981e31`. ```js assert.strictEqual(triangleInscribedInEllipse(), '1.895093981e31'); ``` # --seed-- ## --seed-contents-- ```js function triangleInscribedInEllipse() { return true; } triangleInscribedInEllipse(); ``` # --solutions-- ```js // solution required ```