--- id: 5900f5351000cf542c510047 title: 'Problema 456: Triángulos que contienen el origen II' challengeType: 5 forumTopicId: 302130 dashedName: problem-456-triangles-containing-the-origin-ii --- # --description-- Definiendo: $$\begin{align} & x_n = ({1248}^n\bmod 32323) - 16161 \\\\ & y_n = ({8421}^n\bmod 30103) - 15051 \\\\ & P_n = \\{(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)\\} \end{align}$$ Por ejemplo, $$P_8 = \\{(-14913, -6630), (-10161, 5625), (5226, 11896), (8340, -10778), (15852, -5203), (-15165, 11295), (-1427, -14495), (12407, 1060)\\}$$ Sea $C(n)$ el número de triángulos cuyos vértices están en $P_n$ que contiene el origen en el interior. Ejemplos: $$\begin{align} & C(8) = 20 \\\\ & C(600) = 8\\,950\\,634 \\\\ & C(40\\,000) = 2\\,666\\,610\\,948\\,988 \end{align}$$ Calcular $C(2\\,000\\,000)$. # --hints-- `trianglesContainingOriginTwo()` debería retornar `333333208685971500`. ```js assert.strictEqual(trianglesContainingOriginTwo(), 333333208685971500); ``` # --seed-- ## --seed-contents-- ```js function trianglesContainingOriginTwo() { return true; } trianglesContainingOriginTwo(); ``` # --solutions-- ```js // solution required ```