--- id: 5900f48d1000cf542c50ff9f title: 'Problema 288: Un fattoriale enorme' challengeType: 5 forumTopicId: 301939 dashedName: problem-288-an-enormous-factorial --- # --description-- Per ogni numero primo $p$ il numero $N(p, q)$ è definito da $N(p,q) = \sum_{n=0}^q T_n \times p^n$ con $T_n$ generato dal seguente generatore casuale di numeri: $$\begin{align} & S_0 = 290797 \\\\ & S_{n + 1} = {S_n}^2\bmod 50\\,515\\,093 \\\\ & T_n = S_n\bmod p \end{align}$$ Sia $Nfac(p,q)$ il fattoriale di $N(p,q)$. Sia $NF(p,q)$ il numero di fattori $p$ in $Nfac(p,q)$. Ti è dato che $NF(3,10000) \bmod 3^{20} = 624\\,955\\,285$. Trova $NF(61,{10}^7)\bmod {61}^{10}$. # --hints-- `enormousFactorial()` dovrebbe restituire `605857431263982000`. ```js assert.strictEqual(enormousFactorial(), 605857431263982000); ``` # --seed-- ## --seed-contents-- ```js function enormousFactorial() { return true; } enormousFactorial(); ``` # --solutions-- ```js // solution required ```