--- id: 5900f4ae1000cf542c50ffbf title: 'Problema 320: Fattoriali divisibili da un numero intero enorme' challengeType: 5 forumTopicId: 301977 dashedName: problem-320-factorials-divisible-by-a-huge-integer --- # --description-- Sia $N(i)$ sia il più piccolo numero intero $n$ tale che $n!$ sia divisibile per $(i!)^{1234567890}$ Sia $S(u) = \sum N(i)$ per $10 ≤ i ≤ u$. $S(1000)=614\\,538\\,266\\,565\\,663$. Trova $S(1\\,000\\,000)\bmod {10}^{18}$. # --hints-- `divisibleByHugeInteger()` dovrebbe restituire `278157919195482660`. ```js assert.strictEqual(divisibleByHugeInteger(), 278157919195482660); ``` # --seed-- ## --seed-contents-- ```js function divisibleByHugeInteger() { return true; } divisibleByHugeInteger(); ``` # --solutions-- ```js // solution required ```