--- id: 5900f5131000cf542c510024 title: 'Problema 421: fattori primi di n15+1' challengeType: 5 forumTopicId: 302091 dashedName: problem-421-prime-factors-of-n151 --- # --description-- Numeri nella forma $n^{15} + 1$ sono compositi per ogni numero intero $n > 1$. Per numeri interi positivi $n$ e $m$, sia $s(n, m)$ la somma dei distinti fattori primi di $n^{15} + 1$ non eccedenti $m$. Ad es. $2^{15} + 1 = 3 × 3 × 11 × 331$. Quindi $s(2, 10) = 3$ e $s(2, 1000) = 3 + 11 + 331 = 345$. Inoltre ${10}^{15} + 1 = 7 × 11 × 13 × 211 × 241 × 2161 × 9091$. Quindi $s(10, 100) = 31$ e $s(10, 1000) = 483$. Trova $\sum s(n, {10}^8)$ per $1 ≤ n ≤ {10}^{11}$. # --hints-- `primeFactorsOfN15Plus1()` dovrebbe restituire `2304215802083466200`. ```js assert.strictEqual(primeFactorsOfN15Plus1(), 2304215802083466200); ``` # --seed-- ## --seed-contents-- ```js function primeFactorsOfN15Plus1() { return true; } primeFactorsOfN15Plus1(); ``` # --solutions-- ```js // solution required ```