--- id: 5900f52c1000cf542c51003e title: 'Problema 447: Retrazioni C' challengeType: 5 forumTopicId: 302119 dashedName: problem-447-retractions-c --- # --description-- Per ogni intero $n > 1$, la famiglia di funzioni $f_{n, a, b}$ è definita da: $f_{n, a, b}(x) ≡ ax + b\bmod n$ per $a, b, x$ integer e $0 \lt a \lt n$, $0 \le b \lt n$, $0 \le x \lt n$. Chiameremo $f_{n, a, b}$ una retrazione se $f_{n, a, b}(f_{n, a, b}(x)) \equiv f_{n, a, b}(x)\bmod n$ per ogni $0 \le x \lt n$. Sia $R(n)$ il numero di retrazioni per $n$. $F(N) = \displaystyle\sum_{n = 2}^N R(n)$. $F({10}^7) ≡ 638\\,042\\,271\bmod 1\\,000\\,000\\,007$. Trova $F({10}^{14})$. Dai la tua risposta nel formato $1\\,000\\,000\\,007$. # --hints-- `retractionsC()` dovrebbe restituire `530553372`. ```js assert.strictEqual(retractionsC(), 530553372); ``` # --seed-- ## --seed-contents-- ```js function retractionsC() { return true; } retractionsC(); ``` # --solutions-- ```js // solution required ```