--- id: 5900f3a11000cf542c50feb4 title: 'Problema 53: selezione combinatoria' challengeType: 5 forumTopicId: 302164 dashedName: problem-53-combinatoric-selections --- # --description-- Ci sono esattamente dieci modi di selezionare tre da cinque, 12345:
123, 124, 125, 134, 135, 145, 234, 235, 245, e 345
In statistica combinatoria, usiamo la notazione, $\\displaystyle \\binom 5 3 = 10$ In generals, $\\displaystyle \\binom n r = \\dfrac{n!}{r!(n-r)!}$, dove $r \\le n$, $n! = n \\times (n-1) \\times ... \\times 3 \\times 2 \\times 1$, e $0! = 1$. È solo raggiungendo $n = 23$, che un valore eccede un milione: $\\displaystyle \\binom {23} {10} = 1144066$. Quanti, non necessariamente distinti, valori di $\\displaystyle \\binom n r$ per $1 \\le n \\le 100$, sono più grandi di un milione? # --hints-- `combinatoricSelections(1000)` dovrebbe restituire un numero. ```js assert(typeof combinatoricSelections(1000) === 'number'); ``` `combinatoricSelections(1000)` dovrebbe restituire 4626. ```js assert.strictEqual(combinatoricSelections(1000), 4626); ``` `combinatoricSelections(10000)` dovrebbe restituire 4431. ```js assert.strictEqual(combinatoricSelections(10000), 4431); ``` `combinatoricSelections(100000)` dovrebbe restituire 4255. ```js assert.strictEqual(combinatoricSelections(100000), 4255); ``` `combinatoricSelections(1000000)` dovrebbe restituire 4075. ```js assert.strictEqual(combinatoricSelections(1000000), 4075); ``` # --seed-- ## --seed-contents-- ```js function combinatoricSelections(limit) { return 1; } combinatoricSelections(1000000); ``` # --solutions-- ```js function combinatoricSelections(limit) { const factorial = n => Array.apply(null, { length: n }) .map((_, i) => i + 1) .reduce((p, c) => p * c, 1); let result = 0; const nMax = 100; for (let n = 1; n <= nMax; n++) { for (let r = 0; r <= n; r++) { if (factorial(n) / (factorial(r) * factorial(n - r)) >= limit) result++; } } return result; } ```